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Abstract

In this work we present a challenge dataset
for few- and zero-shot multimodal informa-
tion extraction to support the data-driven de-
sign (DDD) of materials. The benchmark re-
purposes manually-verified tabular data from
Jensen et al. (2019)’s study of zeolite synthesis.
The proposed dataset is intended to evaluate
systems’ capabilities in information extraction,
disambiguation, and normalization from tables
and related text (e.g. captions), in both mul-
timodal and text-only settings. We argue that
data-driven design presents a promising task
— data-rich, useful, and challenging — against
which to benchmark next-generation informa-
tion extraction systems.

1 Introduction

Data-driven design (DDD), a process by which ma-
terials scientists use information extracted from
the literature to inform future experiments, has
emerged in the past decade as an important method
by which to accelerate the discovery of materi-
als (Olivetti et al., 2020). As NLP methods have
evolved, so too has their application to data-driven
design problems, from pipeline-based approaches
using multiple purpose-trained models and rely-
ing heavily on rules-based, handwritten heuristics
(Kim et al., 2017; Court and Cole, 2018; Jensen
et al., 2019, inter alia) to end-to-end approaches in-
volving fine-tuning large language models (LLMs)
to act as information extractors and assistants
(Zheng et al., 2023), or generate structured out-
put describing properties directly (Dagdelen et al.,
2024).

However, even current data-driven design work
relies on annotated data. The method proposed
in Dagdelen et al. (2024), for instance, suggests
annotating “ 100–500 text passages” in order to
fine-tune an LLM to produce structured data. This
type of data can be difficult to produce: it often
requires domain expertise to collect, verify, and
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Figure 1: The process of data-driven design. Our bench-
mark focuses on the middle two phases: extraction/fil-
tering and disambiguation/normalization

postprocess into a format that is appropriate for
training such models. This problem is exacerbated
when considering that data-driven design efforts
often seek to extract information into specific, non-
overlapping schemas, limiting the possibility of
data sharing or transfer learning to reduce the bur-
den on individual materials scientists seeking to
start a new data-driven design project.

Given, however, the rapid development of mod-
els that can process scientific documents, both in
text-only and multimodal formats, we view the
possibility of data-driven design projects that re-
quire little to no annotated data as both highly desir-
able and feasible in the near future. The extraction
challenges created by typical data-driven design
projects also remain at the frontier of the capabili-
ties of even newer models: processing visually-rich
documents with information in text, tables, and
figures; disambiguating extracted information to
a standardized schema; and performing consistent
numerical reasoning to normalize scales and units
so that extracted information is comparable across
papers (Miret and Krishnan, 2024).

In this paper, we propose an initial dataset to
demonstrate DDD’s suitability as a challenge task
and benchmark for next-generation information ex-
traction models, focused on replicating a subset of
the data extracted in Jensen et al. (2019), which fo-



cuses on zeolite synthesis. Zeolites are crystalline
materials with a variety of industrial uses, and have
therefore been the subject of many studies in DDD.
We intend for this benchmark to reflect a realistic
subset of the data-driven design process, while at
the same time making some allowances for model
affordances like context windows and expected in-
put modalities.

We therefore present the benchmark in two set-
tings: a multimodal variant, which presents as input
an image or a PDF page containing the information
to extract, and a text-only variant, in which input
is XML/HTML containing the same information.
In both cases, the expected output is the disam-
biguated, normalized table presented in the origi-
nal paper, which unifies the data from across many
documents. We propose zero-shot baselines in both
settings, and find that while modern systems per-
form strongly on common formats of tables, their
ability to extract and integrate information varies
widely between different sources of information
and different table layouts.

We are currently working to determine to deter-
mine in what format we can release this dataset, but
note that the multimodal setting of the benchmark
can be easily regenerated given the downloaded
PDFs and the metadata that we provide. We will
release a script to perform this reconstruction.

2 Data Driven Design and Task Scoping

In keeping with the literature, we conceptualize of
DDD as a task separated into four phases, which
we visualize in figure 1, and discuss below:

• Search/retrieval In this phase, researchers
typically collect a large number of papers us-
ing high-recall, low-precision methods like
keyword matching. Papers are typically down-
loaded in a number of different formats, in-
cluding scraped HTML, XML from APIs, and
PDFs that are then converted to text.

• Information extraction and filtering In this
phase, researchers will attempt to extract in-
formation corresponding to the schema of in-
terest from the retrieved papers. Notably, in
this phase, not all extracted information is rel-
evant, necessitating a filtering process. The
specific methods by which this phase is car-
ried out have varied over time. Olivetti et al.
(2020) describe an pipelined approach com-
mon at the time; end-to-end approaches have
since become more popular.

• Disambiguation and normalization In this
phase, researchers attempt to make informa-
tion extracted from retrieved papers compara-
ble. This can be seen as a two-step process:
disambiguating extracted information into the
intended schema, and normalizing numerical
values to be comparable, in both scale and
units.

• Visualization and Modeling The goal of data-
driven design projects is typically not just the
extraction and disambiguation of information,
but using it to visualize existing literature, in
order to plan future experiments, or to serve
as a preliminary screen for promising new
candidate materials by predicting properties
of interest, such as in Zhang et al. (2024).

We argue that a useful evaluation for IE systems
is to focus on the middle two phases, namely infor-
mation extraction and filtering, and disambiguation
and normalization. With this scope, we aim to
present a system with the content of a paper and
the desired schema, and have it output normalized
information from the paper in that schema. Sys-
tems that perform well at this evaluation would
be immensely useful to materials scientsts: given
a collected set of potentially useful papers and a
desired schema, the system could automate the con-
struction of a dataset that allows visualization and
modeling of new materials systems.

2.1 Task Settings
This scope, however, can still present logistical
challenges to contemporary approaches: many
strong models and systems remain unimodal, and
the entire length of a paper may not fit within their
context windows. This can be especially challeng-
ing when extracting information from the text con-
tent of a document, given that it can occur any-
where within a paper. To localize the necessary
information, while preserving the challenging, mul-
timodal characteristics of the tasks, we therefore
focus on extraction from tables, rather than from
text or supplementary information.

With these limitations in mind, we design our
task such that the model receives a localized view
containing the information to be extracted in one
of two formats: either multimodal, in which the
model receives a PDF or PNG representation of the
page containing the table and related information
to be extracted, or text-only, in which the model
receives an HTML or XML representation of the



necessary tables, captions, and footnotes. In both
of these settings, models are still required to extract
information into the provided schema where it ex-
ists, ignore irrelevant information and normalize
data to fit the schema.

3 Dataset Construction

To demonstrate the challenge of this task scoping,
we aim to replicate a subset of the dataset generated
from the DDD pipeline developed in Jensen et al.
(2019). The original dataset 1 consists of synthesis
parameters and derived products of germanium-
containing zeolites from 116 papers, resulting in
1638 rows of data. Zeolite synthesis typically in-
volves creating a gel from several components: the
elements that form the crystal, such as silicon and
germanium, additional reaction components, such
as water, and an organic molecule that directs the
crystal formation. This dataset contains twelve
columns of these ingredients, as well as several
more that represent further normalization of their
contents, or the results of corroborating simulations.
We simplify this dataset, removing information not
originally found in the text.

In keeping with the constraints discussed in Sec-
tion 2, we filter this dataset to information extracted
from tables only. The original dataset facilitates
this with a column indicating where the data was
sourced from in the given article: Table, Text, or
Supp (indicating supplementary information). We
use only data marked Table. We note, however, that
the authors of the original study manually reviewed
and corrected the extracted information, and in the
process, included information that is not originally
extracted from tables, and may not be within the
one-page context that we provide to our models.
For this reason, and for granular error analysis, we
additionally annotate the dataset for the location of
the data into eight categories falling into three buck-
ets: (1) Data from the table itself (entire columns
for that data, information in headers, or information
in particular cells under hierarchical indices); (2)
Data from related text (table footnotes and captions,
or text on the page); or (3) not present (not present
within the page context, or not present in the paper
at all). We present a visualization of how data are
distributed alone these buckets in Figure 2.

Additionally, we omit one paper that contained
none of the relevant information to this task on

1Available at: https://github.com/olivettigroup/
table_extractor/blob/master/zeolite_data/ge_
synthesis_data.csv

Figure 2: Distribution of data locations in the dataset
per column type. Green bars indicate information found
within tables, blue indicates related text, and orange/-
grey indicates information not available to the models.
We note that common information not found on the
same page is usually in the paper’s synthesis section,
which is often not where the synthesis table is found.

the same page as the corresponding table.2 This
results in 28 papers, 601 rows of data, and 7,188
total individual data points. We show a sample
of the dataset in Table 1, which corresponds to the
reproduced table in Figure 3. We discuss the table’s
features and work through an example instance of
the dataset in sections 3.2 and 3.3, respectively.

3.1 Data Collection and Processing
3.1.1 Multimodal Setting
We manually collected PDFs for all 28 papers, and
manually verified the page location of the table
from which data was extracted. We then generated
both single-page PDF documents and PNG images
of that page as input for the multimodal setting.
For this setting, we performed no additional post-
processing.

3.1.2 Text-only Setting
For the text-only setting, we used publisher APIs
where available to download a full-text XML repre-
sentation of the article’s content, and extracted the
table, caption, and any other relevant content into a
separate document. If an XML representation was
not available, we scraped the HTML representation
of the paper, and extracted the same elements from
the HTML representation in a separate file. In each
case, we wrap the content into a top-level tag to

2This can arise when e.g. all samples are described and
named in a different part of the article, and only those sam-
ple names are referenced in the table reporting experimental
results/characterization.

https://github.com/olivettigroup/table_extractor/blob/master/zeolite_data/ge_synthesis_data.csv
https://github.com/olivettigroup/table_extractor/blob/master/zeolite_data/ge_synthesis_data.csv
https://github.com/olivettigroup/table_extractor/blob/master/zeolite_data/ge_synthesis_data.csv


make the whole file valid XML/HTML to allow for
error-free parsing.

We performed a minimal degree of post-
processing on the extracted HTML/XML to allow
the content to more easily fit within shorter context
lengths; we removed redundant declarations like
per-tag XML namespaces. However, we left tag
metadata like HTML and CSS classes and styling
information in place given their potential semantic
utility in table understanding.

For the text-only setting, we do not include any
text not directly linked to a table, with the reasoning
that searching for the correct information to include
would bias our results; position/page information
is not as readily available in an XML document.
Additionally, in one case, Figure 3 from Corma
et al. (2006)3, the authors use grayscale color fills
of cells rather than text in a table to indicate syn-
thesis products. We do not consider this table to
have a valid textual interpretation without the nec-
essary resolution of grayscale value to synthesis
product name. As a result, we omit this table from
the textual setting of this benchmark, resulting in
457 rows of data.

3.2 Task Features

This task presents a number of interesting chal-
lenges to information extraction methods. In this
section, we discuss these features, using a represen-
tative table from Lorgouilloux et al. (2009, Figure
3).

Table Understanding. The core challenge of this
task is processing tables in the variety of forms
in which they occur. Tables expressing synthesis
parameters and recipes are difficult to construct:
Experiments often involve the systematic variation
of several different parameters, leading to a chal-
lenge in how to represent hierarchical data in many
dimensions in an ultimately two-dimensional ta-
ble. This results in a number of different formats.
Figure 3 demonstrates perhaps the most common
format, normalized rows per-experiment, but hier-
archical representations that involve leaving cells
blank to indicate a hierarchical grouping of experi-
ments are also common, and pose a challenge for
table understanding models.

Related Information. While this task is primar-
ily oriented around table extraction, information
necessary to understanding the table is frequently

3DOI: 10.1016/j.jcat.2006.04.036

Figure 3: Example table from the dataset, reproduced
from Lorgouilloux et al. (2009, Table 1). This table
demonstrates several of the challenges with table extrac-
tion in this dataset, including: (1) Generic table layout
understanding; (2) Processing information related to ta-
bles, such as captions and footnotes; (3) Understanding
and resolving in-document substitutions; and (4) Nu-
merical reasoning to normalize ratios.

presented around the table. Figure 3 specifies the
OSDA compound in the caption, and additionally
specifies the expansion of several acronyms in table
footnotes, which are placed directly below the table.
Further, many papers introduce information neces-
sary for table understanding in the text surrounding
the tables, leading to our benchmark setting pro-
viding the full page context for a table. We note
that table captions can be an edge case for some
approaches: The VILA (Shen et al., 2022a) model,
for example, detects the table caption as part of
the table, which can lead some table understanding
models to parse table captions as further rows of the
table, rather than footnotes. Further, understanding
non-table information here requires the resolution
of superscripts to their corresponding footnotes.

Numerical Reasoning. Synthesis procedures for
zeolites are commonly expressed in terms of molar
ratios of the components, and the choice of which
element to which to normalize changes interpreta-
tion of numerical values in the table. For example,
in Figure 3, ratios are scaled to the combination of
silicon and germanium in the sample. By contrast,
several other papers (and the final dataset) scale to
only the quantity of silicon, requiring a normaliza-



Si Ge Al OH H2O HF SDA B Time Temp SDA Type Extracted
1 0.667 0 0.8335 33.34 0 0.8335 0 336 170 3-ethyl-1-meth... TON+MFI+argutite
1 0.667 0 1.667 33.34 0 1.667 0 336 170 3-ethyl-1-meth... MFI+unknown
1 0 0 0.5 8 0.5 0.5 0 336 170 3-ethyl-1-meth... Amorphous
1 0.25 0 0.625 10 0.625 0.625 0 336 170 3-ethyl-1-meth... IM-16+unknown

Table 1: Sample rows from our dataset, filtered from Jensen et al. (2019). This table represents the first four rows of
the table seein in Figure 3. For space, we omit the columns where we describe where the data was located.

tion step that introduces a multiplicative factor to
enable direct comparison of results across papers.

Within-document Reference Resolution. Be-
fore normalization can occur, tables often require
the resolutions of symbols that are defined else-
where in the document. In this case, the table head-
ers indicate that the H2O, R, and HF columns are
normalized to T , which the upper header declares
as the combination of silicon and germanium in the
sample.

Sparsity. In many cases in the extracted dataset,
columns will have values of 0, because a given
element was not used. Systems that attempt this
benchmark must not hallucinate non-zero values
even when given a comprehensive schema of all
items that may or may not be present.

3.3 A Worked Example

Figure 3 represents indices 375-390 from our
dataset. We reproduce the first four rows of this
table here, and demonstrate how to extract the rele-
vant columns in the first row.

If present, the silicon content is always the basis
of normalization, and so receives a value of 1 in the
Si column. This therefore leads us to normalize the
germanium value, in the ratio of Si:Ge 0.4:0.6, to
0.667. This paper uses neither aluminum nor boron,
leading to 0 values for both of those. Water and
HF content are similarly normalized by dividing by
0.6.

In the table in Figure 3, the R column is inter-
preted as the OSDA, even though this is not spec-
ified in the paper. This is a common substitution,
alongside others, such as using “T” as the basis for
normalization. We therefore use the values in the
R column for the SDA value.

Text found elsewhere on the page provides addi-
tional information that must be incorporated. Syn-
thesis paragraph 2.1 implies that the OSDA is also
the source of OH ions: “and 3-ethyl-1-methyl-3H-
imidazol-1-ium bromide (98%, Solvionic), which
was transformed into its OH form by ion exchange

in water.” The time and temperature (170°C for 14
days) are from the same paragraph; 14 days must
be normalized to 336 hours.

The name of the OSDA is specified in the table
caption. The names of the products are extracted
into column S, but must be expanded using the
table footnotes to indicate that “Arg” is argutite,
and “Q” is quartz.

This table demonstrates several of the challenges
in this dataset, from table understanding, to resolv-
ing in-table references, having conventional knowl-
edge, and using contextual text that is not explicitly
part of the table being considered or extracted.

3.4 Evaluation

Given the information extraction-based nature of
this task, we consider an F1 metric, with some al-
lowance for what is counted as a match. In the
case of numeric columns, to allow for imprecision
in normalization of ratios, we consider a “correct"
answer to be within 5 of the true answer. In the
case of the OSDA name column and the extracted
products column, we expect an exact match on a
lowercased version of the string with all punctu-
ation replaced by an underscore; in the case of
the extracted products column, we note that often,
several products of a reaction are mentioned; we
intend to improve the granularity of our evaluation
in ongoing work. Given the large variance of the
number of rows/data points extracted from individ-
ual articles, we consider a micro-averaged F1 score
to be an appropriate choice.

For evaluation, we provide code that accepts a
spreadsheet with the same header row as the origi-
nal dataset (omitting the location rows). This code
expects ten numeric and two text columns. None
values indicate that the model is deliberately not
providing a response, to disambiguate from cases
where the correct extraction is zero, or another com-
mon placeholder value. For our F1 metric, we con-
sider any data that is available on the page (i.e. not
annotated as being “not on page” or “not present”)
a candidate for extraction. A true positive is any



data point that is available to the model and cor-
rectly extracted; false negatives are any point that
the model fails to extract. False positives include
both incorrectly extracted values and values that
are not available to the model, but that it provided
a value for anyway. True negatives are information
not available to the model that it successfully does
not provide a value for. We micro-average the F1
across papers, and additionally provide per-location
F1 scores to indicate what sources of information
models are adept at working with.

However, evaluation does pose additional chal-
lenges: While some tables translate straightfor-
wardly between rows in the original table and the
dataset, others are structured differently, using hi-
erarchical indices, such that blank cells’ content
must be inferred, or tables with multiple levels of
hierarchy, where one cell and the headers that in-
dex it correspond to a row in the final dataset. We
call these tables cross-indexed. Further, while the
table reproduced in Figure 3 uses identifiers for in-
dividual samples, that is not common in our dataset.
As a result, there is no a priori alignment between
rows in the dataset and rows produced from models
solving this task.

To address this, we use a simple heuristic algo-
rithm that attempts to align rows in the dataset with
rows produced from the systems under evaluation,
with strong priors towards the initial alignment be-
ing correct. Our algorithm begins by computing
a row-wise score between all rows in the dataset
and predictions. This score computes the match
discussed above on all columns where information
is within the provided context window, to avoid
spurious matches on absent information. We then
iterate through each row of the dataset, and choose
the highest scoring predicted row to align with each
row in the dataset. In the case of a score tie, the
sequentially following row is assigned. Because of
the varying structures of tables in the dataset, we
additionally implement fallbacks in the case of a
mismatched number of rows between the dataset
and predictions. In the case where the model pro-
duces more rows than are observed in the dataset,
each additional row is penalized as being false posi-
tives; in the case where the model produces too few
rows, we construct placeholder rows of no predic-
tions to indicate that the model has not provided an
answer. We note both that this alignment strategy
is not guaranteed to produce the optimal alignment,
but also that any similar strategy will end up favor-
ing models by potentially offering mistaken credit.

Figure 4: Baseline results. We visualize all four baseline
settings here, and note that the NLP-xml setting gained
a notable advantage over other settings.

We plan to iterate on this in future versions of this
work.

4 Baselines

Despite recent work investigating Large Language
Models (LLMs) as possible automated scientists
(Lu et al., 2024; Si et al., 2024), to our knowledge
LLMs have never been systematically evaluated on
research processes such as precise multi-document
review and synthesis.

As a baseline, we evaluated a prompt-based strat-
egy with a multimodal Large Language Model,
GPT-4o (OpenAI et al., 2024). Our goal was for the
model to perform both the information extraction
and table normalization jointly when provided with
either an image (300 dpi PNG) of the PDF page, or
the raw underlying XML of the document.

We selected two prompt constructors from
among the authors of this paper: One, a gradu-
ate student in NLP; the other, a graduate student in
materials science. This setup gives us insight into
the process of prompt construction coming from
either NLP or materials science expertise. Each
constructor was provided with the same three ran-
domly selected articles from the dataset to act as
a guide while developing their prompts. We inten-
tionally restricted the prompt constructors’ access
to the full set of papers so that information and
edge cases from the test set would not influence
prompt design. The prompt constructors also had a
30-minute discussion about prompting strategy, but
otherwise constructed their prompts independently
of one another.

After receiving prompts from the annotators we



made minor edits to produce consistent JSON struc-
tured final output, and to make the prompts suitable
for both image and XML inputs. Outputs were then
post-processed so that column names aligned with
the evaluation data.

Each prompt was applied to the full test dataset
of papers, first with pages represented as images
and then in XML form. This gave us four base-
line outputs: MS-Vis (materials scientist prompter,
for visual modality), MS-xml (materials scientist
prompter, for XML modality), NLP-Vis (NLP
prompter, for visual modality), and NLP-xml (NLP
prompter, for xml modality). The full text of the
prompts is included in Appendix A.

5 Results and Discussion

We summarize our high-level results in Figure 4.
Overall, we find that while GPT-4o performed well
on this benchmark, there is a long way to go be-
fore DDD can be performed fully unsupervised. In
particular, we note that in the visual setting, our
highest F1 score is 0.54, which rises to 0.69 in the
XML setting. But even with access to raw text
in the XML setting, precision is well below 1.0,
meaning that researchers might still be required to
manually verify extracted values. The result that
the text-only setting performs better is not surpris-
ing, and does point to the promise of DDD via
publisher APIs, rather than through scraping PDFs.

In addition, we plot the F1 results against the lo-
cation from which the data was extracted in Figure
5. This table offers several insights into how the
model fares on this benchmark. Perhaps most no-
tably, there is a large difference in performance be-
tween different table layouts: Whereas the models
are relatively successful at extracting tables where
one row in the table maps to one row in the dataset,
reaching a top F1 of 0.803, that performance does
not generalize to cross-indexed tables where recipe
parameter values are placed in hierarchical column
and row indices, and table cell values indicate the
synthesis recipe corresponding to those values.

We also see differences across modalities. Ta-
ble headers are much more successfully parsed in
the text-only setting, across both of our prompters,
where table captions are better parsed in a visual
setting. Interestingly, footnotes seem to be the most
robustly parsed type of data, outperforming even
conventional table extraction.

6 Open Questions and Future Work

We present in this paper a preliminary version of
the dataset that we hope to iterate on. In this section,
we discuss ongoing work and future directions for
this benchmark. We’d appreciate discussion on
these points!

More Thorough Baselines. In this paper, we run
four baselines, but atop a single model. In future
work, we plan to expand the thoroughness of our
baselines by using different models and including
in-context learning as a setting.

Grounding. In creating this dataset, we chose to
implement an entirely end-to-end evaluation frame-
work. In part, this was designed to test the degree
to which contemporary models and systems can be
used as a drop-in addition to existing DDD work-
flows. This is dissimilar, however, from the way
that datasets such as FinQA (Chen et al., 2022)
are constructed, in which each piece of extracted
information is grounded to a place in the text. To
what degree is grounding necessary for the mea-
surements of this benchmark to be reliable?

Whole PDF Extraction. In the construction of
this benchmark, we deliberately avoided using
whole PDFs as a concession to the practicality of
processing. This had cascading effects, in that we
were then constrained to data that remained local-
ized to a reasonable context (in our case, a page).
Given, however, the fairly strong performance that
our baselines achieved on this task, designing a
whole-PDF/XML version of this benchmark is on
the road map for this work.

Scale. In this dataset, we examined a subset of
one DDD paper. However, the utility of a zero- or
few-shot model for this task is not for its ability to
replicate one study, but to be a generalizable tool
for DDD more broadly. In future work, we plan
to expand along two axes: First, by expanding the
scope include both larger studies, and more of the
study each time. In particular, Pan et al. (2024)
follow up on Jensen et al. (2019)’s work by signif-
icantly expanding the scope, while still ensuring
quality by manual verification. Second, we plan
to expand to another domain, including data on
composition-property relationships of aluminum
alloys (Pfeiffer et al., 2022), to test the degree to
which techniques can transfer across subfields in
materials science.



Figure 5: Location-based results. We see a clear differentiation in performance across table extraction from different
table types: Cross-indexed tables are difficult in both settings, for both prompters. Notably, we see large differences
in the parsing of table headers and captions across settings. XML settings are excluded for the “page text" category,
because we did not include paper text in the XML setting, as discussed in section 3.

7 Related Work

Visually Rich Document Understanding The
proposed benchmark bears many similarities to
work in visually rich document understanding
(VRDU). Tasks in VRDU, including to answer
questions based on financial documents (Chen
et al., 2022), or to understand forms (Jaume et al.,
2019), receipts (Park et al.), or to perform infor-
mation extraction on non-disclosure agreements
and financial statements (Stanisławek et al., 2021).
Each of these datasets emphasizes the use of visual
document features as necessary information to un-
derstand the documents’ contents. However, while
many of these tasks focus on documents that have
been scanned and had OCR applied to them, we
focus in this paper on scientific documents that are
natively digital. We note, however, that scientific
literature from before digital typesetting remains
of significant interest in many fields.

Scientific Document Understanding Separately
from document understanding tasks more gener-
ally, work on understanding scientific documents
is a growing field. Work like VILA (Shen et al.,
2022b) implements document structure recognition
on scientific publications, and DDD has historically
relied on information extraction tools like Chem-
DataExtractor (Swain and Cole, 2016; Mavracic
et al., 2021) and MatSciBERT (Gupta et al., 2022).

8 Conclusion

In this paper, we repurpose a tabular dataset for
data-driven design in materials science as a bench-
mark for multimodal information extraction. We
scope the problem down to page-level information
extraction tasks, in which models are expected to
pull from a variety of information contexts to sat-
isfy the goal, and expose two settings, multimodal
and text-only. In evaluating a model on our bench-
mark, we see that while models perform well on
certain kinds of standardized tables, their perfor-
mance drops significantly on tables with different
layouts, or where information needs to be found
elsewhere in the document. We argue that bench-
marks oriented towards data-driven design should
be strong candidates on which to focus effort in
information extraction, both to advance the state
of the art in NLP, and for the utility to materials
science.

Limitations

We discuss the limitations of this work in several
sections of the paper. To summarize here, this work
is currently limited both by its scope and granular
details of implementation. We hope to address both
of these in ongoing work.
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A Prompts

We provide the prompts used by both prompt writ-
ers in this section below.

A.1 MS-Vis

\
You are a journal analyst, expert in data

extraction and analysis. \
You will be provided with a image as a page

captured from a journal. \
Your task is to extract the synthetic recipe

information contained in the table and
format it into JSON for every single entry.\

Show full response for every step.\
Between every step, think again out loud if the

adjustments are correct or not, if not, make
adjustments and evaluate until you think it
is correct.

The final JSON recipe should contain
1. all the molar fraction(atomic percentage) of

every metal element and common chemical
compounds

2. the condition of that synthetic process such
as time and temperature

3. (optional) additional agents used in the
synthesize process.

Here are the steps:
Step 1: Extract data from the table itself and

reconstruct it as a markdown table using
latex expression for all entry. Pay extra
attention on the superscript and subscripts,
skip the ones that are footnotes. If values
presented contain a range, use the mean of
the range.

Step 2: Read the caption and all the text that
strongly relates to this table

Step 3: Adjust or fill-in the table based on the
information gathered in step 2. Replace the
specific abbreviation only used in this
journal with its well defined name. If the
abbreviation is widely used, don't replace
it. If you are not sure about the
abbreviation, leave it as its original form.

Step 4: Reconstruct the table to reduce the
dimension. Every row would be a single
synthesis process recipe. Keep the format
same as markdown table with latex expression
.

Step 5: Replace the ratios with the recipe's
molar fraction for every metal element and
common chemical compounds. For recipes

containing Si, normalize Si to 1. For
recipes containing Ge, normalize Ge to 1 if
Si is absent.

Step 6: Convert the markdown table into JSON
format, each recipe should be similar to the
structure below

{recipe_format}

Your final response should be a JSON object of
the following form:

{{
"step1": <>,
"step2": <>,
"step3": <>,
"step4": <>,
"step5": <>,
"recipes": [

{recipe_format},
{recipe_format},
...,
]

}}

A.2 MS-XML

\
XML Document:

{context}

You are a journal analyst, expert in data
extraction and analysis. \

You have been given an XML document of a paper
captured from a journal. \

Your task is to extract the synthetic recipe
information contained in the table and
format it into JSON for every single entry.\

Show full response for every step.\
Between every step, think again out loud if the

adjustments are correct or not, if not, make
adjustments and evaluate until you think it
is correct.

The final JSON recipe should contain
1. all the molar fraction(atomic percentage) of

every metal element and common chemical
compounds

2. the condition of that synthetic process such
as time and temperature

3. (optional) additional agents used in the
synthesize process.

Here are the steps:
Step 1: Extract data from the table itself and

reconstruct it as a markdown table using
latex expression for all entry. Pay extra
attention on the superscript and subscripts,
skip the ones that are footnotes. If values
presented contain a range, use the mean of
the range.

Step 2: Read the caption and all the text that
strongly relates to this table

Step 3: Adjust or fill-in the table based on the
information gathered in step 2. Replace the
specific abbreviation only used in this
journal with its well defined name. If the
abbreviation is widely used, don't replace
it. If you are not sure about the
abbreviation, leave it as its original form.

Step 4: Reconstruct the table to reduce the
dimension. Every row would be a single
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synthesis process recipe. Keep the format
same as markdown table with latex expression
.

Step 5: Replace the ratios with the recipe's
molar fraction for every metal element and
common chemical compounds. For recipes
containing Si, normalize Si to 1. For
recipes containing Ge, normalize Ge to 1 if
Si is absent.

Step 6: Convert the markdown table into JSON
format, each recipe should be similar to the
structure below

{recipe_format}

Your final response should be a JSON object of
the following form:

{{
"step1": <>,
"step2": <>,
"step3": <>,
"step4": <>,
"step5": <>,
"recipes": [

{recipe_format},
{recipe_format},
...,
]

}}

A.3 NLP-Vis

\
You are a materials science research assistant

agent. Your task is to visually analyze
papers from the materials science field and
extract information about {recipe_type}
recipes.

Each image will contain a table describing the
synthesis recipe. This table will contain
information about the recipe including:

- Ratios of the reaction reagents, including {
reagents} and other elements

- Information on the temperature and duration of
the reaction

- The structure directing agent, which guides
the formation of the zeolites

You must perform the following steps, using your
own visual capabilities (which are
significant and have been highly improved by
{model_makers}) and not relying on external
tools.

1. Read the contents of the table, and duplicate
that table as a csv within your response.
Make sure to carefully read possible
subscript (for instance, for element ratios
in a molecular formula) from the table, and
distinguish them from footnotes in the table
. Do not abbreviate the table. If values
presented contain a range, use the mean of
the range.

2. Identify which properties from the property
list below are included in the table. Many
of the properties relate to quantities or
ratios of reagents. Sometimes the column
will be named based on the source material (
ie SiO2 for Si). Treat those as the
corresponding element. Write out a mapping
between columns and properties.

3. Read the text to find other recipe
information that are not contained in the
table text, but may be mentioned in the text
of the paper or the caption of the table.

4. Expand any abbreviations used in the recipe.
For instance, if the recipe describes U = Na
+ Cl, that means that "U" represents the
total amount of Na and Cl in the recipe.
Write the expanded abbreviations below the
table and other relevant information.

5. Determine the ratio for each reagent. Setting
Silicon to "1", determine the proportion
for each reagent relative to the silicon.
Sometimes the table will already do this; in
that case, replicate it from the table. But
if a Si/Ge ratio of .5 is described, Si = 1
and Ge = 2. You can write out the
mathematical expressions used to perform
these calculations.

6. Rewrite the csv table as a JSON containing
adjusted values. For instance, if "U" ( = Na
+ Cl) had its own column, create a column
for Na and a column for Cl. The resulting
recipe list must be a list of JSON objects,
with each object corresponding to one recipe
and its properties.

Ignore information related to the resulting
properties of the resulting compound, only
focus on the parameters/instructions used to
perform the recipe. If an expected value in
the recipe (listed below), fill that value
with the empty string.

The properties of interest are:
{properties}
Do not include any properties except for these (

or properties which are equivalent)!

The JSON response should be in this format:

{{
"table csv": <open text>,
"other information": <open text>,
"property_mapping": <open text>,
"formula abbreviations": <open text>,
"ratio calculations": <open text>,
"recipes": [

{recipe_format},
{recipe_format},
...,
]

A.4 NLP-XML

\
XML Document:

{context}

You are a materials science research assistant
agent. Your task is to analyze papers from
the materials science field and extract
information about {recipe_type} recipes.

You have been given an XML document containing a
table describing the synthesis recipe. This
table will contain information about the
recipe including:

- Ratios of the reaction reagents, including {
reagents} and other elements



- Information on the temperature and duration of
the reaction

- The structure directing agent, which guides
the formation of the zeolites

You must perform the following steps, using your
own reasoning capabilities (which are

significant and have been highly improved by
{model_makers}) and not relying on external
tools.

1. Read the contents of the table, and duplicate
that table as a csv within your response.

Make sure to carefully read possible
subscript (for instance, for element ratios
in a molecular formula) from the table, and
distinguish them from footnotes in the table
. Do not abbreviate the table. If values
presented contain a range, use the mean of
the range.

2. Identify which properties from the property
list below are included in the table. Many
of the properties relate to quantities or
ratios of reagents. Sometimes the column
will be named based on the source material (
ie SiO2 for Si). Treat those as the
corresponding element. Write out a mapping
between columns and properties.

3. Read the text beyond the table to find other
recipe information that are not contained in
the table text, but may be mentioned in the
text of the paper or the caption of the

table.
4. Expand any abbreviations used in the recipe.

For instance, if the recipe describes U = Na
+ Cl, that means that "U" represents the

total amount of Na and Cl in the recipe.
Write the expanded abbreviations below the
table and other relevant information.

5. Determine the ratio for each reagent. Setting
Silicon to "1", determine the proportion

for each reagent relative to the silicon.
Sometimes the table will already do this; in
that case, replicate it from the table. But
if a Si/Ge ratio of .5 is described, Si = 1
and Ge = 2. You can write out the

mathematical expressions used to perform
these calculations.

6. Rewrite the csv table as a JSON containing
adjusted values. For instance, if "U" ( = Na
+ Cl) had its own column, create a column

for Na and a column for Cl. The resulting
recipe list must be a list of JSON objects,
with each object corresponding to one recipe
and its properties.

Ignore information related to the resulting
properties of the resulting compound, only
focus on the parameters/instructions used to
perform the recipe. If an expected value in
the recipe (listed below), fill that value

with the empty string.

The properties of interest are:
{properties}
Do not include any properties except for these (

or properties which are equivalent)!

The JSON response should be in this format:

{{

"table csv": <open text>,
"other information": <open text>,
"property_mapping": <open text>,
"formula abbreviations": <open text>,
"ratio calculations": <open text>,
"recipes": [

{recipe_format},
{recipe_format},
...,
]

}}


	Introduction
	Data Driven Design and Task Scoping
	Task Settings

	Dataset Construction
	Data Collection and Processing
	Multimodal Setting
	Text-only Setting

	Task Features
	A Worked Example
	Evaluation

	Baselines
	Results and Discussion
	Open Questions and Future Work
	Related Work
	Conclusion
	Prompts
	MS-Vis
	MS-XML
	NLP-Vis
	NLP-XML


